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Abstract

We present a solution method for fully implicit radiation diffusion problems discretized on meshes having millions of

spatial zones. This solution method makes use of high order in time integration techniques, inexact Newton–Krylov

nonlinear solvers, and multigrid preconditioners. We explore the advantages and disadvantages of high order time inte-

gration methods for the fully implicit formulation on both two- and three-dimensional problems with tabulated

opacities and highly nonlinear fusion source terms.
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1. Introduction

The simulation of nonlinear and coupled physical phenomena requires efficient numerical methods for

solution. One application which is computationally intensive is modeling transport of neutral particles. Sim-

ulations of this application are important in calculations relevant to astrophysics, shielding, inertial confine-

ment fusion, and atmospheric radiation. The Boltzmann transport equation is often used for modeling these

problems. Due to the six degrees of freedom present in this equation, diffusion approximations are often used

to give coarse estimates of solutions. Solution of the nonlinear diffusion approximation is still a demanding
task, however, and the need for computational methods to efficiently solve these problems is still required.
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In this paper, we present a fully implicit solution method for radiation diffusion problems. Fully implicit

methods can allow for larger time steps and more accurate solves for a given amount of work than can

explicit or semi-implicit methods. Our method makes use of high order in time integration techniques, inex-

act Newton–Krylov nonlinear solvers, and multigrid preconditioners. We target problems discretized on

meshes having millions of spatial zones.
The first work on implicit solution of radiation diffusion problems was done by Axelrod et al. in 1984

when they presented a solution method using a high order GEAR ODE solver [1] for integration in time

coupled with a Newton method and an approximate direct solver [2]. Their work showed a distinct advan-

tage in both accuracy and run time of the implicit solver over an operator split approach on multigroup

diffusion in one dimension. This work did not, however, follow with development of solvers for large-scale

problems. In particular, the very effective Newton–Krylov methods [3–5] were not applied to implicit radi-

ation diffusion problems until much later. One obstacle to use of these methods was the requirement of

effective preconditioners for the linear Jacobian systems. In 1999, Rider and co-workers [6,7] applied these
methods along with multigrid preconditioning to one- and two-dimensional equilibrium problems and

showed substantial benefit in accuracy of a second order in time fully implicit solver over a first order

semi-implicit solver where nonlinearities are lagged between time steps.

For semi-implicit methods, time steps are often chosen to be small enough to maintain accuracy despite

explicit (or lagged) parts of the computation. When moving to an implicit method, however, the question of

how to choose the time step should be revisited since an implicit method generally allows a larger step size

for a given accuracy within a computation. Rider and Knoll [8] suggested a method of choosing steps for

the fully implicit formulation by using a hyperbolic model of the system. Brown et al. [9] simultaneously
pursued implicit methods based on the work of Axelrod et al. and employed ODE time integrator technol-

ogy for three-dimensional multigroup diffusion. These methods choose time steps based on solution accu-

racy requirements of the user and local time truncation error estimates [10].

Mousseau et al. extended the work of Rider et al. to problems where the radiation and matter fields are

not in equilibrium. They again applied Newton–Krylov methods with first and second order time stepping

on two-dimensional problems [11,12]. They used an operator-splitting method and multigrid for precondi-

tioning. Brown andWoodward [13], also looking at non-equilibrium problems, developed an effective Schur

complement-based preconditioner and demonstrated parallel scalability of a fully implicit solver based on
high order time integration, Newton–Krylov methods, and semicoarsening multigrid techniques on three-

dimensional problems with hundreds of millions of unknowns. They found that preconditioners for the

implicit system need to account for the coupling between matter and radiation effectively and also showed

that the choice of preconditioner is crucial to the success of the fully implicit solve for large-scale problems.

More recently, implicit formulations of radiation diffusion have been combined with hydrodynamics

problems in a coupled manner. Bates et al. [14] have developed a nonlinearly consistent solver for the cou-

pled system. Howell and Greenough [15] have also extended implicit diffusion methods to include coupled

problems with hydrodynamics within the context of adaptive mesh refinement. Recent work in the area has
also included investigations into the relative performance of Newton–Krylov methods with nonlinear mul-

tigrid techniques [16]. These studies have shown that Newton–Krylov is in general faster for these prob-

lems, but that nonlinear multigrid can have advantages in early time steps [17–19]. Additionally, Lowrie

[20] has compared several implicit time integration approaches for nonlinear relaxation and diffusion prob-

lems and Ropp et al. [21] have studied the accuracy of time integration methods for reaction-diffusion equa-

tions, including operator-splitting approaches.

With the exception of the original work by Axelrod et al. and the work of Brown and Woodward, the

above work does not consider high order time integration and tabulated opacities. High order methods can
result in significant benefits in run time reduction while maintaining high accuracy. Care must be taken,

however, in how these methods are applied as poor tolerance selection can lead to instabilities. In addition,

when using Newton–Krylov methods, a nonlinear residual evaluation is required at each linear iteration.
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These evaluations require re-computation of opacity values from outside tables. Often packages developed

to use these tables will perform interpolation or spline fits leading to possible significant computational ex-

pense for each opacity evaluation. (Note that traditional methods just time-lag these values.) Lastly, none

of the above work examines performance of implicit solvers for problems with highly nonlinear fusion

source terms. These sources result in solutions which exhibit fast changes. Good solvers will need to capture
these changes accurately which can most efficiently be done with adaptive time stepping technology.

In this paper, we present a fully implicit solution method based on ODE time integration technology tar-

geting large-scale radiation diffusion problems.We examine its advantages and disadvantages as compared to

that of a semi-implicit method for three-dimensional problems with tabulated opacities from the LEOS equa-

tion of state library [22]. We also consider nonlinearities introduced from fusion source terms in the material

energy equation. These terms are highly nonlinear and give rise to a potentially difficult nonlinear problem

within the implicit formulation. Our results indicate that a fully implicit solution approach can achieve more

accurate solutions than semi-implicit solution methods in many simulations involving the interaction of radi-
ation and matter with highly nonlinear source terms. Furthermore, the fully implicit approach can be as cost

effective as semi-implicit approaches in many cases despite the use of tabulated values for the opacities.

Lastly, the solution approach is shown to scale well to very large problems solved on parallel machines.

Numerical results in this paper compare our fully implicit method with a semi-implicit method that

represents the state-of-the-art in many simulation areas. This semi-implicit technique (detailed below)

time-lags the opacity terms which have been commonly thought to be too expensive to evaluate with higher

frequency. In addition, the term coupling radiation and matter is linearized. The advantages of the scheme

are that a single linear system must be solved to high accuracy for each time step, that system is symmetric
and positive definite, and many current solvers are particularly efficient on symmetric systems (such as con-

jugate gradients or multigrid). The main disadvantage is the need to take very small steps in order to main-

tain accuracy after the time-lagging and linearizations have been done. As stated above, our fully implicit

method can take larger time steps and can easily use high order time integration methods. In addition, gen-

eral purpose packages for solution of implicit systems can easily be used, and a semi-implicit implementa-

tion can be taken advantage of for use in preconditioning an implicit method thereby making use of an

existing semi-implicit code. The main disadvantage of the implicit method is the need to re-evaluate all non-

linearities at every iteration. The results in this paper indicate, however, that the implicit method is still fas-
ter than the semi-implicit method even with these extra nonlinearity evaluations.

In the next section of this paper, we outline the model problem we are considering. The section following

overviews both our fully implicit method and a semi-implicit solution method to which we compare, as well

as the nonlinear and linear solvers we use. In the results section, we give comparisons of the two methods,

examinations of some algorithmic elements of our solution strategy, and some demonstrations of our meth-

od�s performance on a large, parallel machine. We conclude with some remarks about the viability of fully

implicit methods on radiation diffusion problems.
2. Flux-limited radiation diffusion model

For this work, we consider the flux-limited, two-temperature formulation of radiation diffusion given by

[23,24]
oER

ot
¼ r � c

3qjRðTRÞ þ krERk
ER

rER

 !
þ cqjPðTMÞ � aT 4

M � ER

� �
þ vðxÞcaT 4

source, ð1Þ
where ER(x,t) is the radiation energy density (x = (x,y,z)), TM(x,t) is the material temperature, q(x) is the
material density, c is the speed of light, and a = 4r/c, where r is the Stephan–Boltzmann constant. The
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Rosseland opacity, jR, is a nonlinear function of the radiation temperature, TR, which is defined by the

relation ER ¼ aT 4
R. The Planck opacity, jP, is a nonlinear function of material temperature, TM, which

is related to the material energy through an equation of state, EM = EOS(TM). Here, Tsource is a given

source temperature, and v(x) is a function of the spatial variable x. In the limiter, the norm iÆi is taken

to be the l2 norm of the gradient vector.
This equation is coupled to an equation expressing conservation of material energy given by
oEM

ot
¼ �cqjPðTMÞ � aT 4

M � ER

� �
þ lðx,tÞT 5

M, ð2Þ
where lT 5
M is a fusion source term with l(x,t) a function of both space and time.

This system is highly nonlinear due to the opacity dependencies on temperatures as well as the fusion

source term. Opacities typically depend on temperatures as a power law with typical expressions like

j = CT�p, where C is a constant and p may be 3–5 depending on the material and physical regime

[25,26]. We consider Dirichlet, Neumann, and Robin boundary conditions for the system (1) and (2),

and our focus here is on the development of solution methods for this system.
3. Solution methods

For both the fully implicit and semi-implicit formulations, we employ a cell-centered finite difference

approach for the spatial discretization. We use a tensor product grid with Nx, Ny, and Nz cells in the x,

y, and z directions, respectively. Defining ER,i,j,k(t) � ER(xi,j,k,t) and EM,i,j,k(t) � EM(xi,j,k,t), with xi,j,k =
(xi,yj,zk), and
ER �

ER,1,1,1

..

.

ER,Nx,Ny,Nz

0
BB@

1
CCA and EM �

EM,1,1,1

..

.

EM,Nx,Ny,Nz

0
BB@

1
CCA,
we can write our discrete equations in terms of a discrete diffusion operator given by
LðERÞ � L1,1,1ðERÞ, . . . ,LNx,Ny,NzðERÞ
� �T

, ð3Þ
a local coupling operator given by
SðER,EMÞ � ðS1,1,1ðER,EMÞ, . . . ,SNx,Ny,NzðER,EMÞÞT, ð4Þ
and a material source term
RðEMÞ � ðR1,1,1ðEMÞ, . . . ,RNx,Ny,NzðEMÞÞT, ð5Þ
where
Li,j,kðERÞ � Diþ1=2,j,k
ER,iþ1,j,k � ER,i,j,k

Dxiþ1=2,j,k
� Di�1=2,j,k

ER,i,j,k � ER,i�1,j,k

Dxi�1=2,j,k

� ��
Dxi

þ Di,jþ1=2,k
ER,i,jþ1,k � ER,i,j,k

Dyi,jþ1=2,k
� Di,j�1=2,k

ER,i,j,k � ER,i,j�1,k

Dyi,j�1=2,k

 !,
Dyj

þ Di,j,kþ1=2

ER,i,j,kþ1 � ER,i,j,k

Dzi,j,kþ1=2

� Di,j,k�1=2

ER,i,j,k � ER,i,j,k�1

Dzi,j,k�1=2

� ��
Dzk ð6Þ
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with
Diþ1=2,j,k �
c

3qiþ1=2,j,kjR,iþ1=2,j,k þ krERkiþ1=2,j,k=ER,iþ1=2,j,k
,

Di�1=2,j,k �
c

3qi�1=2,j,kjR,i�1=2,j,k þ krERki�1=2,j,k=ER,i�1=2,j,k
,

Di,jþ1=2,k �
c

3qi,jþ1=2,kjR,i,jþ1=2,k þ krERki,jþ1=2,k=ER,i,jþ1=2,k
,

Di,j�1=2,k �
c

3qi,j�1=2,kjR,i,j�1=2,k þ krERki,j�1=2,k=ER,i,j�1=2,k
,

Di,j,kþ1=2 �
c

3qi,j,kþ1=2jR,i,j,kþ1=2 þ krERki,j,kþ1=2=ER,i,j,kþ1=2

,

Di,j,k�1=2 �
c

3qi,j,k�1=2jR,i,j,k�1=2 þ krERki,j,k�1=2=ER,i,j,k�1=2

,

and
Si,j,kðER,i,j,k,EM,i,j,kÞ ¼ cqi,j,kjP,i,j,k aT 4
M,i,j,k � ER,i,j,k

� �
, ð7Þ
and
Ri,j,kðEM,i,j,kÞ ¼ li,j,kT
5
M,i,j,k: ð8Þ
Thus, our discrete scheme is to find ER(t) and EM(t) such that,
dER

dt
¼ LðERÞ þ SðER,EMÞ þQ, ð9Þ

dEM

dt
¼ �SðER,EMÞ þ RðEMÞ, ð10Þ
where Q includes the source term along with terms from the discretized boundary conditions. For more

details, see [13].

3.1. Fully implicit

For the fully implicit formulation, we use an ODE time integrator to handle the implicit time step selec-

tion for the system (9) and (10). In particular, we employ the parallel ODE solver, CVODE [10], developed
at Lawrence Livermore National Laboratory and based on the VODPK package [27]. CVODE employs the

fixed leading coefficient variant of the backward differentiation formula (BDF) method [28,29] and allows

for variation in the order of the time discretization as well as in the time step size.

The methods in CVODE are predictor–corrector in nature, and so each time step begins with the calcu-

lation of an explicit predictor. An implicit corrector is then employed to solve for the time step solution.

This time integration technique leads to a coupled, nonlinear system of equations that must be solved at

each time step. For example, solving the ODE system
_y ¼ f ðt,yÞ, ð11Þ

with the backward Euler method (i.e., the BDF method of order 1), leads to the following nonlinear system:
0 ¼ F ðyÞ � y � Dtf ðtn,yÞ � yn�1 i:e:,
yn � yn�1

Dt
¼ f ðtn,ynÞ

� �
ð12Þ
that must be solved for y = yn at each time step. For the solution of this system, CVODE uses an inexact

Newton–Krylov method with Jacobian-vector products approximated by finite differences of the form
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F 0ðyÞv � F ðy þ hvÞ � F ðyÞ
h

, ð13Þ
where h is a scalar. Within the Newton–Krylov paradigm, only the implementation of the nonlinear func-

tion is necessary, and Jacobian matrix entries need never be formed or stored. The explicit predictor, yn(0), is
used as an initial guess to the nonlinear system (12). The details of how tolerances are selected for the non-

linear and linear iterations in CVODE are discussed in detail in the overview paper [30]. Finally, when the

initial nonlinear residual, F(yn(0)), is small enough (i.e., meets the nonlinear system stopping tolerance),

CVODE sets the linear solver answer to s0 = �F(yn(0)), which then gives yn(1) = yn(0) + s0 =

Dtf(tn,yn(0)) + yn � 1. This amounts to one step of functional iteration for solving (12), and so the number

of linear iterations can be 0 for some Newton iterations.

In the methods discussed above, we use the scaling technique incorporated into CVODE. Thus, we in-

clude an absolute tolerance (ATOL) for each unknown and a relative tolerance (RTOL) applied to all un-
knowns. These tolerances are then used to form a weight that is applied to each solution component during

the time step from tn � 1 to tn. This weight is given as
wi ¼ RTOL � jyin�1j þATOLi, ð14Þ

and then the weighted root mean square norm
kykWRMS ¼ N�1
XN
i¼1

ðyi=wiÞ2
" #1=2

ð15Þ
is applied on all error-like vectors within the solution process. This scaling gives each solution component

equal weight when measuring the size of errors in y. For our application, we supply two absolute toler-
ances, one to be used with the radiation energy unknowns and one to be used with the material energy

unknowns.

3.1.1. Time step selection

Time step sizes are chosen in an attempt to maximize step sizes while controlling the local truncation

error, and thus give a solution that obeys a user-specified accuracy bound. For a typical linear multistep

method (under mild assumptions on the step sizes), the local truncation error (LTE), at order q and step

size Dt, satisfies an asymptotic relation of the form
LTE ¼ CðDtÞqþ1yðqþ1Þ þOððDtÞqþ2Þ,

where y(q + 1) is the q + 1st derivative of y, and C is a constant. A similar relation holds for the predictor

yn(0). These are combined to get the following order q + 2 estimate used in CVODE, namely
LTEðDtnÞ � Cqðyn � ynð0ÞÞ, ð16Þ
where yn is the final iterate in the Newton iteration and Cq is a constant that depends on the BDF method

order q but is independent of the solution. If iLTE(Dtn)iWRMS < 1, then the time step is accepted. If this

condition is violated, the step size is cut, and the solution is recomputed. New steps are chosen by estimat-

ing the local truncation error at the new step, Dt 0, as
kLTEðDt0ÞkWRMS �
Dt0

Dtn

� �qþ1

kLTEðDtÞkWRMS, ð17Þ
where q is the current method order. The new step is chosen to give the largest time step still satisfying

iLTE(Dt 0)iWRMS < 1. CVODE also changes the BDF method order by comparing the local truncation

errors for the BDF methods of order q � 1 and q + 1 when using order q, and then taking the order that

allows the largest time step.



766 P.N. Brown et al. / Journal of Computational Physics 204 (2005) 760–783
We use the GMRES Krylov iterative solver for solution of the linear Jacobian system at each Newton

iteration [31]. The tolerance for the Newton iteration is taken to guarantee that iteration error introduced

from the nonlinear solver is smaller than the local truncation error. The default linear system tolerance in

CVODE is taken to be the factor a = 0.05 times the nonlinear system tolerance. This factor can be option-

ally set in the CVODE solver, and for some of the problems discussed below we use a smaller value of a, as
the default of 0.05 did not work for the larger RTOL values. The default maximum subspace dimension for

GMRES in CVODE is 5, and we use this default in all of our tests. For more details regarding the step size

and order selection strategies in CVODE, as well as acceptance of a step and nonlinear convergence, we

refer the reader to the review article [30].
3.1.2. Preconditioning

Preconditioning is generally essential when using Krylov linear solvers. To describe our preconditioning

strategy, we begin by considering the content and structure of the Jacobian matrix. In (11), set
y ¼ ðET

R,E
T
MÞ

T
, and then form f using the right-hand sides of (9) and (10). The Jacobian matrices used in

the Newton method are of the general form F 0(y) = (I � cJ), where J = of/oy is the Jacobian of the nonlin-

ear function f, and the parameter c ” Dtb with Dt the current time step value and b a coefficient depending

on the order of the BDF method. Recalling the definitions of the discrete divergence and source operators,

the block form of the Jacobian of f is
J ¼
oL=oER þ oS=oER oS=oEM

�oS=oER �oS=oEM þ oR=oEM

� �
¼

Aþ G B

�G �Bþ C

� �
,

where A = oL/oER, G = oS/oER, B = oS/oEM, and C = oR/oEM. We note that G, B and C are diagonal

matrices.

On close inspection of the nonlinear diffusion operator L(ER), we can write
LðERÞ ¼ L̂ðERÞER, ð18Þ

where L̂ is a nonlinear matrix-valued function of ER. In all of our preconditioning strategies, we neglect the

nonlinearity in the diffusion term and use the approximation
A ¼ oLðÊRÞ=oER � L̂ðÊRÞ � ~A,
where oLðÊRÞ=oER is the Jacobian of L evaluated at a radiation energy, ÊR. The size of the neglected term

is related to the derivatives of the Rosseland opacity and the flux-limiter. Our motivation for neglecting this
term arises from the fact that �~A is symmetric and positive definite, whereas �A is not. Making this

approximation leads to a symmetric preconditioning matrix. Symmetry matters within the preconditioner

since we will be applying multigrid methods which work most efficiently on symmetric and positive definite

systems. In addition, symmetric preconditioning matrices require half the storage of non-symmetric sys-

tems. Lastly, we note that the derivative of the flux-limiter may lead to numerical errors if $ER approaches

0.

Our preconditioning strategy is to factor the matrix, I � cJ, as
P Q

U T

� �
� I � cð~Aþ GÞ �cB

cG I � cðC � BÞ

 !
¼ M
into the following:
MSchur ¼
I QT�1

0 I

 !
P � QT�1U 0

0 T

 !
I 0

T�1U I

� �
:
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Letting S = P � QT�1U, we write the solution to MSchurx = b as
x1
x2

� �
¼ S�1ðb1 � QT�1b2Þ

T�1ð�Ux1 þ b2Þ

 !
:

If the Schur complement, S, is exactly inverted, there will be no error associated with this

preconditioner for the non-flux-limited, constant opacity case. In addition, because B, C and hence

T are diagonal, there is no penalty associated with inverting T for every iteration of a method that

inverts S, as there would be if a material energy diffusion term were added to the equations. Also note

that S is formed by modifying the diagonal of P and thus is composed of a symmetric diffusion-like
matrix with a modified diagonal. Hence, we can employ multigrid methods to invert this Schur

complement.

The Rosseland opacity will exhibit large changes where material interfaces exist in the domain. The tem-

perature dependence gives rise to large value changes as well. These changes imply that the problem can be

very heterogeneous. As a result, to invert the Schur complement matrix (S), we use a multigrid method de-

signed to handle large changes in problem coefficients. In particular, we use one V-cycle of a semi-coarsening

multigrid algorithm, such as the ParFlow semi-coarsening multigrid (PFMG) [32] or the semi-coarsening

multigrid (SMG) developed by Schaffer [33,34] as our multigrid solver. Semi-coarsening multigrid methods
have been found to be quite effective on highly heterogeneous problems. A comparison of PFMG and SMG

can be found in [35]. Details of both these methods can be found in the cited references, and more infor-

mation about multigrid methods in general can be found in [36].

Since Jacobian approximations can be expensive to compute, in CVODE the preconditioner is not up-

dated with every Newton iteration. Preconditioner updates occur only when the Newton iteration fails to

converge, 20 time steps pass without an update, or when there is a significant change in the time step size

and order of the ODE method.

In summary, the main advantage of the fully implicit method is that we have accurate error control in the
time step selection process allowing step sizes to automatically adjust to the problem physics while main-

taining accuracy. The main disadvantage of the method is that opacities must be calculated for every linear

iteration, as a nonlinear function evaluation is required in the matrix–vector product approximation (13).

In general, fully implicit methods require more sophisticated solvers than semi-implicit methods. The solu-

tion method presented above has been tested on very large, three-dimensional problems and has been

shown to be parallel scalable [13].
3.2. Semi-implicit

In the semi-implicit method we compare against, a backward Euler time stepping technique is applied,

wherein opacities, flux-limiters, and material sources are evaluated at the start of a new time step using the

solution from the previous step, and the term coupling radiation to matter, cqjPðTn
MÞðaðTnþ1

M Þ4 � Enþ1
R Þ, is

linearized about the solution from the previous step. The problem is put in a residual formulation so that

the single linear solve required at each time step gives the increment to the solution values from the previous

step�s solution.
3.2.1. Linearization

Beginning with the discrete system (9) and (10) and using (18), we can write
Enþ1
R � En

R ¼ L̂ðEn
RÞEnþ1

R þ KðTn
MÞðaðTnþ1

M Þ4 � Enþ1
R Þ þQnþ1, ð19Þ
Dt
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Enþ1
M � En

M

Dt
¼ �KðTn

MÞðaðTnþ1
M Þ4 � Enþ1

R Þ þ RðTnþ1
M Þ, ð20Þ
where KðTn
MÞ is a diagonal matrix with entries given by Ki,j,k � cqjPðT n

M,i,j,kÞ and Enþ1
M,i,j,k ¼ EOSðT nþ1

M,i,j,kÞ.
Next, letting Tnþ1

M ¼ Tn
M þ DTn

M we linearize to obtain
ðTnþ1
M Þ4 ¼ ðTn

M þ DTn
MÞ

4 � ðTn
MÞ

4 þ 4ðTn
MÞ

3DTn
M:
Similarly, we linearize EM = EOS(TM) to obtain
Enþ1
M ¼ EOSðTn

M þ DTn
MÞ � EOSðTn

MÞ þ
oEOS

oTM

ðTn
MÞDTn

M,
or
Enþ1
M � En

M � oEOS

oTM

ðTn
MÞDTn

M:
Thus,
ðTnþ1
M Þ4 � ðTn

MÞ
4 þ 4ðTn

MÞ
3 oEOS

oTM

ðTn
MÞ

� 	�1

ðEnþ1
M � En

MÞ:
We apply a similar linearization to the fusion source term, l(Tn + 1)5. Substituting this last relationship into
(19) and (20), we have
Enþ1
R � En

R ¼ DtL̂ðEn
RÞEnþ1

R þ DtQnþ1 þ DtKðTn
MÞ

� a ðTn
MÞ

4 þ 4ðTn
MÞ

3 oEOS

oTM

ðTn
MÞ

� 	�1

ðEnþ1
M � En

MÞ
" #

� Enþ1
R

 !
, ð21Þ
and
Enþ1
M � En

M ¼ Dtl ðTn
MÞ

5 þ 5ðTn
MÞ

4 � oEOS

oTM

ðTn
MÞ

� 	�1

ðEnþ1
M � En

MÞ
" #

� DtKðTn
MÞ

� a ðTn
MÞ

4 þ 4ðTn
MÞ

3 oEOS

oTM

ðTn
MÞ

� 	�1

ðEnþ1
M � En

MÞ
" #

� Enþ1
R

 !
, ð22Þ
where we solve for the changes, DEn
R � Enþ1

R � En
R and DEn

M � Enþ1
M � En

M, given the previous values of En
R

and En
M.

We solve the linear system (21) and (22) using the same linear solver as described above: the

GMRES Krylov iterative solver with a Schur complement factorization preconditioner. The same mul-

tigrid method is used to invert the Schur complement matrix as in the fully implicit case. The linear

iteration is performed until the relative residual is bounded by an input tolerance times the norm of

the right-hand side
krkWRMS 6 �kbkWRMS, ð23Þ
where r is the linear system residual, b is the linear system right-hand side, and � is an input parameter. The

WRMS norm is calculated in the same way as that for CVODE, using RTOL and ATOL values chosen as

in the CVODE case.

We note here that due to the lagging of opacity values and flux limiters, the semi-implicit method is only
first order in time. Without changing how the lagging is handled (and thus adding new opacity evaluation

requirements), this method cannot be changed to higher order.
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3.2.2. Time step selection

Time steps are chosen to try to restrict changes in radiation energy and material temperature within a

step. For specified minimum values, Emin and Tmin, and specified fractional variations allowed in a step,

Efrac and Tfrac, the new step is computed by first calculating a maximum variation for each variable
vR ¼ max
i,j,k

DEn
R

0:5ðEn�1
R þ En

RÞ þ Emin

� �
,

and
vM ¼ max
i,j,k

DT n
M

0:5ðT n�1
M þ T n

MÞ þ Tmin

� �
:

Then, the new step is chosen as
Dtnew ¼ Dtold �minðEfrac=ðvR þ dÞ,T frac=ðvM þ dÞÞ, ð24Þ

where d = 10�7 limits the maximum change in the step size. If the linear iteration fails to converge, that is,

the convergence criterion, (23), is not satisfied in the allotted maximum number of iterations, then the step

is repeated with Dtnew = 0.5 Æ Dtold.

3.2.3. Comparison with fully implicit

Note that this selection process is similar to the error control for the fully implicit case. However, while

the semi-implicit approach bounds the maximum change in solution components over a time step, the fully

implicit approach is bounding the maximum local truncation error made on a step with no direct control on

the solution components. To see the similarity, consider the radiation energy case. The semi-implicit

method selects the step so that
vR=Efrac ¼
DEn

R

0:5ðEn�1
R þ En

RÞEfrac þ EminEfrac

< 1: ð25Þ
Taking ATOLR = EminEfrac, RTOL = Efrac, and noting that 0:5ðEn�1
R þ En

RÞ is an approximation to the cur-

rent radiation energy, we see that the ith component of the variation that is being bounded in the semi-

implicit case is just,
DEn
R

RTOL � En
R þATOL

: ð26Þ
The variation in local truncation error that is bounded in the fully implicit case is just this expression. But

instead of looking at the variation over a time step in DEn
R, we look at the variation between the predictor and

the corrector. Since the error in each of these approximations can be bounded, the variation in the predictor

and corrector gives us a concrete estimate on the local truncation error. In [37,38], the authors describe and
analyze time step selection strategies for ODEs that control the relative change in the numerical solution,

similar to that described above for our semi-implicit method. As remarked in [37], the great applicability

of controlling the relative change is also its greatest weakness. That is, it treats all methods like a first order

method. Thus, it can be very inefficient if used to control the time step size for higher order methods.
4. Numerical results

In this section, we present numerical results of solving nonlinear diffusion problems with the high order

fully implicit method. We compare the method with a semi-implicit scheme for both accuracy and compu-

tational speed. We also investigate some of the advantages of the high order integration method and look at
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which orders give the highest benefit. Lastly, we show results of solving very large-scale nonlinear diffusion

problems in parallel.

In the following subsections, the numerical statistical counters and parameters are

� RTOL the relative tolerance,
� MO the maximum order allowed, implicit method only,

� NST the number of time steps,

� NNI the number of nonlinear iterations,

� NLI the number of linear iterations,

� RT the run time in seconds,

� FAC the specified fractional variation allowed in both energies within a step, semi-implicit only.

In the following examples we will use step and bi-cubic functions to define the spatial and temporal ex-
tent of the source functions v(x) and l(x,t) in (1) and (2), respectively, given by
Hðx,�Þ �
1 if jxj 6 �,

0 otherwise:



ð27Þ

Bðx,�Þ �
2 �þx

2

� �2
6� 8 �þx

2�

� �
if � � < x 6 0,

2 ��x
2

� �2
6� 8 ��x

2�

� �
if 0 6 x < �

0 otherwise:

8>><
>>: ð28Þ
The simulations in this paper use the LEOS equation-of-state data base [22]. This data base allows for the

extraction of total energy and Planck and Rosseland opacities using various interpolation methods. We use

bi-cubic interpolation for the material energy EOS(TM) and bi-linear for the Planck and Rosseland opac-

ities. Although this data base provides methods of returning out-of-bound values, we have designed the test
problems presented here so that there were no out-of-bounds data requests.

Due to its robustness, the SMG algorithm was used for the multigrid portion of the preconditioner for

all runs in Sections 4.1, 4.2 and 4.3. Due to its superior scalability features, we used the PFMG method for

multigrid solves, unless otherwise specified, for the studies done in Section 4.4.
4.1. Demonstration of accuracy

In this section, we present a test case which demonstrates accuracy of the fully implicit and semi-implicit
codes compared to analytic solutions. All runs in this and the next subsection were done on a single pro-

cessor in a Compaq cluster of 1 GHz EV68 Alpha processors.

Our first numerical test case is the Su–Olson problem, a one-dimensional Marshak problem that has a

published analytic solution [39]. The problem starts with a homogeneous initial condition for the radiation

and material temperature. A Robin boundary condition of the form
Eð0,tÞ � 2

3jR

� �
oEð0,tÞ
ox

¼ 1 ð29Þ
is applied at x = 0, and a homogeneous Dirichlet condition is applied at x = 1. In practice, this right-hand

boundary condition is applied at x = 20.
The material specific heat is given by cv ¼ a

�
T 3

M and the equation of state is EM(TM) = qcvTM. The flux

limiter is not used in this simulation. The Planck and Rosseland opacities are both set to a constant,

jP = jR = 1.0 cm2/g, and � = 0.1. Heat is applied to the left-hand boundary as a result of the above



Table 1

Statistics for both fully implicit and semi-implicit solutions of the Su–Olson problem

Method RTOL FAC NST NNI NLI Max. err. RT

200 Grid points

Implicit 10�5 NA 1609 1654 1604 4.43 · 10�2 7.49

Implicit 10�6 NA 2341 2405 2338 4.43 · 10�2 9.54

Semi-imp. NA 10�2 3919 NA 3919 4.45 · 10�2 15.5

Semi-imp. NA 10�3 39,053 NA 39,053 4.43 · 10�2 72.9

1000 Grid points

Implicit 10�5 NA 2561 2619 2557 9.69 · 10�3 84.6

Implicit 10�6 NA 3759 3832 3755 9.69 · 10�3 83.1

Semi-imp. NA 10�2 5573 NA 5573 9.91 · 10�3 86.2

Semi-imp. NA 10�3 55,782 NA 55,782 9.64 · 10�3 2281.8

10,000 Grid points

Implicit 10�5 NA 3788 3853 3781 1.05 · 10�3 809.1

Implicit 10�6 NA 5600 5685 5595 1.05 · 10�3 1332.1

Semi-imp. NA 10�2 7621 NA 7621 1.34 · 10�3 1190.7

Semi-imp. NA 10�3 76,540 NA 76,540 1.04 · 10�3 17935.2

Maximum relative error given is for radiation temperature.
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boundary condition. As the temperature of the radiation field increases, energy is transfered to the material.

Simulations were run to a time of 3.34 · 10�5 ls. At this time the wave front is still far enough away from

the right boundary that the boundary condition does not affect the solution.

Table 1 gives a comparison of implicit and semi-implicit method statistics for this problem. The maxi-

mum order, MO, was set to 5 for all implicit runs, and the relative errors reported are the maximum over

the spatial grid computed at the end of the simulation. Relative error is with respect to analytic evaluations

as described in [39]. Note also in the table that the number of time steps is larger than the number of linear

iterations for the implicit method. As noted earlier, it is possible for there to be no linear iterations on a
Newton iteration if the prediction is good enough. For the semi-implicit runs, the preconditioner is very

effective, and hence only 1 linear iteration per time step is needed.

The table shows that for each spatial grid, both methods produce approximately the same errors and

that these errors are converging with the same rate as the grid spacing is refined. We also see that the dis-

cretization errors are independent of the time integration tolerances, indicating that the integration error is

not polluting the spatial discretization error. Thus, the two codes have similar spatial discretization accu-

racies and we can consider that differences in solutions between the codes are related only to handling of

time discretizations and nonlinear couplings.
We note that the effect of the weighted root mean square norm is evident in the fully implicit results for

this system. The fully implicit method chooses time steps in order to bound the estimated local truncation

error measured in the weighted root mean square norm (15) in terms of the relative (RTOL) and absolute

(ATOL) tolerances provided by the user. If CVODE used just a Euclidean 2-norm to choose time steps,

then as the problem size got larger (the number of unknowns increased) and if each component of the esti-

mated truncation error stayed about the same as in the smaller problem, the estimated error could get very

large. The weighted root mean square norm thus scales the estimated error by the number of unknowns to

reduce this effect. To see the motivation for this scaling in the PDE context, consider the following Banach
L2-norm for a spatially dependent function, z, over a domain X, (�X(z(x))2 dx)1/2. A discrete approximation

of this norm over a domain of length, L, decomposed into a grid of N uniform cells of size, Dx, is
XN
i¼1

ðziÞ2Dx
 !1=2

¼ L
N

� �1=2 XN
i¼1

ðziÞ2
 !1=2

, ð30Þ
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where we used the relationship Dx = L/N. This last expression is just the root mean square norm multiplied

by a constant related to the domain size. The result of using the root mean square norm and its induced

scaling by the number of unknowns in our case is that time steps do not decrease as fast as one might expect

for larger runs.

4.2. Comparisons of fully and semi-implicit

In this section, we present results of two 3D simulations with radiation sources, one in hydrogen and the

other in carbon, and results of a 2D problem in hydrogen which includes a time-dependent material energy

source. The 3D hydrogen problem is characterized by a rapid diffusion of radiation energy which will be

limited by the flux limiter. Diffusion in the 3D carbon problem is slower, and the flux limiter is of less

importance. The 2D problem is characterized by a very fast heating rate due to the nonlinear source term.

These test problems demonstrate the benefit and accuracy of fully implicit over semi-implicit.

4.2.1. Radiation source problem

In this 3D simulation, energy is supplied to the radiation field by a source with a specified black body

temperature. The radiation energy is involved in four physical processes, heating from the source, diffusion

of energy out of the heated region, transfer of energy to the material, and interaction with boundaries. The

material energy is involved in only one process, heating via transfer of energy from the radiation field.

In these simulations we use the LEOS equation of state data base as described above and a 20 · 20 · 20

grid with 0.01 cm on each side. Homogeneous Neumann conditions are used on all boundaries, and the
initial radiation and material temperatures are 15 eV.

The source is spherical positioned in a corner with a sharp boundary of radius 0.004 cm,
vðxÞ ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:01Þ2 þ ðy � 0:01Þ2 þ ðz� 0:01Þ2

q
,0:004

� �
,

where H is given by (27). The source temperature, Tsource, is 300 eV.

These simulations were run for a short time interval of 10�6 ls. This final time was kept short as these

tests were designed to compare the two methods on transient problems. Although the grid used in these

examples is coarse, the previous test case shows that errors due to the spatial approximation are the same

in both codes and hence cancel when the solutions are subtracted from each other.

Fig. 1 shows the Planck and Rosseland opacities over the temperature ranges included in these runs. We
see that the material energy for hydrogen varies more readily with temperature than it does with carbon.

Similarly, we see the opacity values decrease faster with temperature for hydrogen than for carbon. These

differences result in a more difficult problem for hydrogen than for carbon.

Tables 2 and 3 summarize simulations using hydrogen and carbon, respectively. We see in all cases that

allowing the implicit method to go to higher orders (above 2) results in a solution requiring fewer time steps

than the second order scheme. Fewer steps are required because the integration method can take larger

steps and lower the resulting error by using a higher order method. Comparing the implicit and semi-

implicit methods in terms of computation run time and number of steps, the implicit method is faster than
the semi-implicit for higher levels of requested accuracy. For the highly resolved solutions, for example,

implicit with RTOL = 10�8 and semi-implicit with FAC = 10�3, implicit can be several times faster.

For the hydrogen case, we see that the fully implicit method has trouble converging in a reasonable num-

ber of time steps for large values of RTOL. We believe this difficulty results from the method becoming

numerically unstable. As noted in [40], BDF methods coupled with iterative linear solvers such as GMRES

are essentially explicit time integration methods. The iterative solver must do a good job of solving in the

subspace generated by the dominant eigenvectors (i.e., the stiff modes). If this does not happen, then these

modes can cause the combined BDF-iterative method to become unstable. Because the larger RTOL
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Fig. 1. Opacities over relevant temperature ranges in the 3D hydrogen (left) and carbon (right) simulations for q = 1.0 g/cc.

Table 2

Statistics for 3D Hydrogen problem

Method RTOL MO FAC NST NNI NLI RT

Implicit 10�5 2 NA DNF

Implicit 10�5 5 NA DNF

Implicit 10�6 2 NA 1673 1728 4798 370

Implicit 10�6 5 NA 708 796 2993 266

Implicit 10�7 2 NA 3681 3784 8900 726

Implicit 10�7 5 NA 1037 1153 3674 333

Implicit 10�8 2 NA 7924 8166 17,085 2089

Implicit 10�8 5 NA 2133 2346 6313 524

Semi-imp. NA NA 10�1 181 NA 1013 100

Semi-imp. NA NA 10�2 1807 NA 9343 667

Semi-imp. NA NA 10�3 18,089 NA 78,166 6595

(DNF = Did not finish).

Table 3

Statistics for 3D Carbon problem

Method RTOL MO FAC NST NNI NLI RT

Implicit 10�5 2 NA 648 670 1693 156

Implicit 10�5 5 NA 401 412 1099 88

Implicit 10�6 2 NA 1434 1483 3329 314

Implicit 10�6 5 NA 807 852 2024 192

Implicit 10�7 2 NA 3150 3284 6583 581

Implicit 10�7 5 NA 1658 1758 3969 377

Implicit 10�8 2 NA 6894 7285 12,955 1323

Implicit 10�8 5 NA 3462 3832 8112 985

Semi-imp. NA NA 10�1 149 NA 654 61

Semi-imp. NA NA 10�2 1468 NA 4986 561

Semi-imp. NA NA 10�3 14,653 NA 29,302 4662
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Fig. 2. Evolution of relative errors for radiation temperature in solution of 3D hydrogen (left) and carbon (right) problems. Relative

error is with respect to the implicit simulation with RTOL = 10�8 and MO = 5.
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tolerances allow more error in the solution, we believe unstable modes are growing and causing numerical

instabilities. For smaller RTOL values, these modes are damped and do not grow. Also, as RTOL is re-
duced, we see significant benefits to using the high order in time integration both in fewer numbers of time

steps and also in decreased run time as compared to the second order method. For more details on the sta-

bility of BDF methods with iterative linear solvers, see [40,41].

Fig. 2 shows the relative error in the radiation temperatures for both the 3D hydrogen and carbon prob-

lems. In most cases, we see that going to higher order gives better agreement with the fully resolved run

than lower order for the fully implicit method. This difference results from the lower order method requir-

ing smaller time steps in order to maintain accuracy and thus taking more time steps. We know that asymp-

totically, the local truncation error is smaller for higher order methods. Because we control this local
truncation error per step, the global error behaves like a sum of local errors and is consequently dependent

on the number of steps. Thus, we expect that the lower order run would have a greater error than the higher

order run for a given tolerance. In addition, since we are using iterative solvers for both nonlinear and lin-

ear solution methods, extra time steps can result in more chances for one solution to deviate (within toler-

ances) from another solution. Lastly, round off error can accumulate. The results of these sources of error is

the difference that we see between the lower and higher order runs. We also see that for all tolerances con-

sidered, the fully implicit method is more accurate than the semi-implicit method. Given that the semi-

implicit run times are generally longer than that for the implicit method, significant speed benefits can
be delivered with the implicit method.

4.2.2. Fusion source problem

Our next example is a 2D fusion source problem. In this problem we have added a material energy

source which has a temperature dependence of T 5
M. This is a good fit to a tritium–deuterium reaction rate

at low temperature (less than a few keV) such as in a tokamak fusion experiment [42, p. 29]. The source

function, l(x,t), is a product of a step function in cylindrical radius and a bi-cubic in time. The source, given

in units of erg

cm3
1
s

1
eV5, which is positioned in the upper right corner of the domain with a sharp boundary in

space is given by,
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lðx,tÞ ¼ 2:31� 10�11
� �

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:01Þ2 þ ðy � 0:01Þ2

q
,0:005

� �
B t � 10�8,10�8
� �

,

where H and B are given by (27) and (28), respectively.

These simulations in hydrogen use a 20 · 20 grid with 0.01 cm on each side. The initial temperatures for

both radiation and material are 100 eV, and the density was taken to be 1 gm/cm3. All boundary conditions
are Neumann, and flux limiting is used for all runs. The LEOS equation of state package is used for opacity

values. The simulations are run to a final time of 2.5 · 10�8 ls.
Fig. 3 shows the history of the radiation and material source function at a point interior to the source

region for this problem. For this problem energy is supplied to the material via the source term, transferred

to the radiation and lost via diffusion. The strong nonlinear dependence of the source term on material tem-

perature, T 5
M, can lead to very rapid increases in temperature. In these problems the source is turned off by

the time dependence in l(x,t).
The large heating rates can also lead to some problems with respect to automatic time step control in the

semi-implicit simulations. In the initial time period, before the source turns on, the automatic time step

control for the semi-implicit method will advance to the maximum allowed time step, HMAX. This

advancement results in the system missing the turn-on of the source. In the simulations presented here,

for the semi-implicit methods, we bypass this problem by using a small maximum time step. It should

be noted that for all the semi-implicit simulations shown in this section, this maximum step size only limits

the step selection during the initial stages of the source. No limitations due to this parameter were observed

for other times in the simulation. (A more consistent way of performing this simulation would be to have a

third equation in the system which models the depletion of a fusion fuel density as its energy is added to the
material. Implicit solutions of this three equation system will be the subject of a following paper.)

Tables 4 and 5 show results of our implicit and semi-implicit simulations for the material source prob-

lem, respectively. The values of RTOL, HMAX, and FAC have been chosen by trial-and-error to yield a set

of runs with similar relative error. In the implicit runs we see that using higher order can lead to a reduction

in run time by a factor of two or three for the more accurate small RTOL runs. For similar accuracy the

semi-implicit method is much slower. The maximum time step limit, HMAX, is used in these simulations to



Table 4

Statistics for implicit solution of 2D matter source problem

RTOL MO NST NNI NLI RT

10�4 2 44 63 136 0.99

10�4 5 36 60 130 1.57

10�5 2 91 126 220 1.66

10�5 5 66 100 175 1.57

10�6 2 175 218 356 3.41

10�6 5 108 167 256 2.08

10�7 2 369 425 632 6.32

10�7 5 201 262 367 3.52

10�8 2 755 849 1212 16.40

10�8 5 300 403 538 4.49

10�9 5 503 695 848 16.90

Table 5

Statistics for semi-implicit solution of 2D matter source problem

FAC HMAX NST NLI RT

10�3 10�9 904 1635 17

10�4 10�10 9754 17,388 191

10�5 10�11 96,884 130,481 1539

10�6 10�12 751,153 751,152 11,744
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restrict the accumulation of error in early times. Without this restriction, the semi-implicit method initially

takes a larger time step and is not able to reduce the time step fast enough to resolve the dynamics. The time
step is controlled by HMAX up to about 0.1 · 10�8 ls in these simulations. After this initial short period of

time the automatic time step control reduces the time step below HMAX.

Fig. 4 shows relative errors of the material temperatures for the 2D source problem. All methods show

the same behavior, a significant increase in error once the source turns on, and a leveling off of the error

once the source turns off. All methods show convergence, with tolerance, to the highly resolved solution.

Although not shown, relative errors in radiation temperature show similar results, but over a smaller scale.

4.3. Order studies for the high order method

In this section, we explore the benefits of higher order and address the issue of which orders give the most

gain in computational speed to solution for a given accuracy.

The first test is on a 3D fusion source problem. The source function, l(x,t), is a product of a bi-cubic

function in spherical radius and a bi-cubic in time. The source is positioned in the center of the domain

and given in units of erg

cm3
1
s

1
eV5 as
lðx,tÞ ¼ 4:75� 10�11
� �

B t,1:02� 10�8
� �

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:005Þ2 þ ðy � 0:005Þ2 þ ðz� 0:005Þ2

q
,0:0025

� �
,

where B is given by (28). These simulations in hydrogen use a 100 · 100 · 100 grid with 0.01 cm on each
side. The initial temperatures for both radiation and material were 100 eV, and the density was taken to

be 1 gm/cm3. All boundary conditions were Dirichlet with a 100 eV temperature, and flux limiting was used

for all runs. The LEOS equation of state package was applied for opacity values, and the simulations were

run to a final time of 2.5 · 10�7 ls. All runs were done on 8 processors of ASCI Frost which is an IBM SP
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parallel machine at Lawrence Livermore National Laboratory running the AIX operating system with 1088

375 MHz processors grouped into 16-processor nodes.

Table 6 shows solver statistics for this problem with maximum allowed order of the time integration set
at 1, 2, 3, and 5. For the simulations in this table the maximum order actually attained was 4. Thus, the runs

with maximum allowed order 4 and 5 are the same. We see a significant gain in going from first to second

order and in going from second to third order. Little benefit is seen in going to higher than third order. For

this problem, third order is high enough to give the required accuracy and going higher introduces overhead

in testing for changes to higher orders which will not give benefit.

Fig. 5 shows the solutions, heating time, and histories of time steps and order choices for a similar test

problem with a density of 2 gm/cm3 and a final time of 2.5 · 10�4 ls. We used a higher density in this case

to result in more transfer of energy from the matter to the radiation field. Also in this case we increased the
strength of the material heating source. We use the l(x,t) of the above simulation with the leading constant

factor increased to 9.5 · 10�11. This problem was run with MO = 5 and RTOL = 10�7. A longer time was

used to give more information on order and step selection. In this problem, we clearly see the heating stage

where the matter temperature undergoes significant increases then levels off while some of the energy is

transferred to the radiation. Both fields decrease in energy toward the end of the run as energy leaves

the domain due to the Dirichlet boundary condition.
Table 6

Statistics for implicit solution of 3D matter source problem

RTOL MO NST NNI NLI RT

10�7 1 NA NA NA DNF

10�7 2 316 336 381 2037

10�7 3 168 187 259 1310

10�7 4 or 5 169 188 275 1367

10�8 1 5193 5408 5395 29,218

10�8 2 676 720 820 4268

10�8 3 360 408 549 2736

10�8 4 or 5 342 395 581 2750
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The order history shows the method initially using third order as the heating region is traversed. After

heating, the method reduces to second order for the majority of the rest of the run. The step size stays con-

stant initially, then increases before the exponential portion of the heating begins. When the heating be-

comes significant, the step size is reduced, then increases again after the heating phase. The step

continues to increase with a brief pause coinciding with a move to fourth order. These changes are a result

of the method adjusting to the solution ‘‘settling down’’ after the large changes from heating and transfer of
energy from matter to radiation. As the energy leaves the system, we see the order and step sizes change

simultaneously. In general, a larger time step creates a larger error and a larger order reduces the error.

Thus, we see that the method will raise the step and reduce the order, then adjust back. Toward the end

of the run, we see these adjustments happen frequently as the solution shows energy decreases. The statistics

for this simulation are NST = 744, NNI = 1132, NLI = 1870 and RT = 4,584 s.

These results show the ability of the variable order, variable step method to adjust to solution changes

while maintaining a given requirement on the size of the local time integration truncation error. This type of

adaptivity results in fewer time steps.

4.4. Results for large-scale computations

In this section, we present results of parallel scalability studies for the fully implicit high order solution

method. These studies give a measure of how well the solution method makes use of additional resources

to solve larger problems. Although use of tabulated opacities and nonlinear sources does not directly af-

fect parallel efficiency of the implicit method, if these terms are not handled well in the preconditioner, we

would see large iteration counts and unacceptably large solution times, making large-scale runs impossi-
ble. Thus, to show the implicit method is effective for large-scale problems with these physical attributes,

we conduct scalability studies for the three situations: a diffusion problem with constant opacities and a

constant radiation source, a diffusion problem with tabulated opacities and a constant radiation source,

and a diffusion problem with tabulated opacities and a nonlinear matter source. The first study was done

with a constant opacity problem running on ASCI Red at Sandia National Laboratory. This system con-

sist of 4536 nodes each containing two 200 MHz Intel Pentium Pro processors. The next two studies were

done using the LEOS tabulated opacity data base on radiation source and fusion source problems

running on ASCI Frost.



Table 7

Statistics for scalability study on ASCI Red with constant opacity problem

Processor topology NST NNI NLI RT Avg. cost per step Step scaled efficiency

1 · 1 · 1 123 140 186 2485 20.2 100%

2 · 2 · 2 113 127 160 2518 22.3 91%

4 · 4 · 4 105 119 154 2424 23.1 88%

8 · 8 · 8 119 136 191 2761 23.2 87%

16 · 16 · 16 116 129 212 2970 25.6 79%

18 · 18 · 18 112 130 214 3001 26.8 75%
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In all studies in this section except the last, we used the PFMG multigrid method [32]. We applied this

algorithm because the PFMG method scales to very large numbers of processors. Our last study was done
with the SMG method and compares scaling results using this preconditioner with the PFMG method.

The first study ran on 5832 processors of ASCI Red using one processor per node running MPI for par-

allel communications. The system (1) and (2) was solved on the box D ” {(x,y,z):0 6 x,y,z 6 1 cm} with no

matter source and a constant radiation source with Tsource = 300 eV at the center of the domain. Constant

Dirichlet conditions of T = 300 K were applied on all boundaries. Initial conditions for both the radiation

and matter were given by TR,0 = TM,0 = 300 K. The equation of state was given simply as TM = EM, and the

matter density was taken as q = 1.0 g/cc. The Planck and Rosseland opacities were set constant and equal as

jP = jR = 105 cm2/g. Flux-limiting was turned on for all runs, and the simulation was run to 0.01 s.
For this study, we added both unknowns and processors as we scaled up the problem keeping a spatial

grid of Nx = Ny = Nz = 40 on each processor. Thus, problem size and computational resources were simul-

taneously increased.

Table 7 contains the results of the study. The reported scaled efficiency for a run on N processors was

calculated by dividing the cost per step for the single processor run by the cost per step for the N processor

case. As can be seen, all the statistics scaled extremely well. As this problem is dominated by the local cou-

pling of the two fields (and not the diffusion operator), a high scaled efficiency is expected. In fact, we see

75% scaled efficiency for the largest test case with 373.2M grid cells.
Our next scalability study used tabulated opacities from the LEOS equation of state data base and was

run on ASCI Frost. The system (1) and (2) was solved on the box D ” {(x,y,z):0 6 x,y,z 6 0.01 cm} filled

with carbon with no matter source and a constant radiation source with Tsource = 300 eV. The source which

is positioned in the center of the domain with a sharp boundary and radius of 0.002 cm is given by
vðxÞ ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:005Þ2 þ ðy � 0:005Þ2 þ ðz� 0:005Þ2

q
,0:002

� �
,

where H is given by (27). Neumann conditions were applied on all boundaries, and the initial temperature

for radiation and material was 15 eV. No flux-limiting was applied. The problem was run to a final time of

2.5 · 10�8 ls with a relative tolerance of 10�6.

There were 40 · 40 · 40 grid cells per processor, and we scaled up the number of processors from 1 to
448 giving a total of 28.67M grid cells. Since ASCI Frost has 16 processors per node and communication

can be faster within a node than without, we used 8 processors per node for all but the two largest runs

where we used 12 and 14 processors per node, respectively.

Table 8 shows the solver statistics and scaled efficiencies for this study. We see that as the problem size

gets larger, the number of steps and solver iterations go up then decrease, but do not change dramatically.

These results indicate that the solution method is able to solve these refined problems effectively. In addi-

tion, the run time does not significantly increase with scaling up the processors and unknowns simulta-

neously. We see a leveling off of the scaled efficiency for the total simulation run time at about 82%.



Table 8

Statistics for scalability study on ASCI Frost with tabulated opacity, radiation heating source problem

Processor topology NST NNI NLI RT Scaled efficiency simulation Scaled efficiency per step

1 · 1 · 1 489 521 901 1401 100% 100%

2 · 1 · 1 563 590 1098 1673 84% 96%

2 · 2 · 2 588 611 1085 1718 82% 98%

4 · 2 · 2 559 579 1177 1836 76% 87%

4 · 4 · 4 529 548 1082 1716 82% 88%

6 · 6 · 6 479 498 983 1735 81% 79%

8 · 8 · 7 463 482 958 1704 82% 78%
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Our last scalability study used a nonlinear matter source and was run on ASCI Frost with the LEOS

equation-of-state data base. The system (1) and (2) was solved on the box D ” {(x,y,z):0 6 x,y,z 6 0.01

cm} with no radiation source and a nonlinear material heating source. The box was filled with hydrogen,

and flux-limiting was applied. The material heating source, given in units of erg

cm3
1
s

1
eV5, is positioned in the

center of the domain with a smooth boundary at a radius of 0.0025 cm and is given by
Table

Statist

Proces

1 · 1 ·
2 · 1 ·
2 · 2 ·
4 · 2 ·
4 · 4 ·
6 · 6 ·
8 · 8 ·
lðx,tÞ ¼ 4:75� 10�11
� �

B t,10�8
� �

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:005Þ2 þ ðy � 0:005Þ2 þ ðz� 0:005Þ2

q
,0:0025

� �
,

where B is given by (28). In this simulation, the source is turned off by the time dependence in l(x,t). The
time dependence of this function is a maximum at t = 0 then turned off with a half width in time of

1.0 · 10�8 ls. Neumann conditions were applied on all boundaries. The initial temperature for radiation
and material was 100 eV. The problem was run to a final time of 2.5 · 10�8 ls with a relative tolerance

of 10�7.

Similar to the previous example, we used 40 · 40 · 40 grid cells per processor and scaled up the number

of processors from 1 to 448 with the same numbers of processors per node in use.

We performed two scalability studies for this test problem. In the first, we applied the PFMG multigrid

method to solve the Schur complement system (Section 3.1.2). Results for this study are found in Table 9

where we see a scaled efficiency of the simulation of about 67% for 448 processors. Table 10 contains the

results of the same study but with the SMG method applied to solve the Schur complement system. Here
the scaled efficiencies are still decreasing and are at 46% for 448 processors. The difference between these

two studies is due to the fact that the SMG solver includes more coupling and thus requires more parallel

communication. The increased couplings result in better algorithmic scaling, as can be seen from the nearly

level numbers of time steps, nonlinear iterations, and linear iterations with the SMG preconditioner, but

results in less parallel efficiency. These two scaling studies show a classic tradeoff between algorithm and

implementation scalabilities. We further note that both the PFMG and SMG preconditioners used in these
9

ics for scalability study on ASCI Frost with tabulated opacity, material heating source problem, PFMG multigrid method

sor topology NST NNI NLI RT Scaled efficiency simulation Scaled efficiency per step

1 124 145 258 439 100% 100%

1 118 136 278 454 97% 92%

2 112 129 255 431 102% 92%

2 133 142 333 529 93% 89%

4 120 134 259 459 96% 93%

6 124 138 269 500 88% 88%

7 144 156 338 654 67% 78%



Table 10

Statistics for scalability study on ASCI Frost with tabulated opacity, material heating source problem, SMG multigrid method

Processor topology NST NNI NLI RT Scaled efficiency simulation Scaled efficiency per step

1 · 1 · 1 117 141 164 393 100% 100%

2 · 1 · 1 110 127 171 419 94% 88%

2 · 2 · 2 101 115 150 414 95% 82%

4 · 2 · 2 99 110 151 448 88% 74%

4 · 4 · 4 97 109 156 531 74% 61%

6 · 6 · 6 106 119 165 688 57% 52%

8 · 8 · 7 101 113 163 858 46% 40%
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studies were taken from the hypre library [43,44], and the developers of this library indicated that they have

seen similar differences between the two methods.

From these three scaling studies we observe that the fully implicit method is able to make use of addi-

tional computational resources to solve increasingly larger problems with both highly nonlinear sources

and with tabulated opacities. The good scaling results mainly from effective preconditioning.
5. Conclusions

We have presented a fully implicit solution method for radiation diffusion problems with highly nonlin-

ear sources. Our method makes use of high order in time integration techniques, inexact Newton–Krylov

nonlinear solvers, and multigrid preconditioning. We have incorporated the use of tabular opacities in our

model in an effort to enhance the accuracy of our test problems as well as to evaluate the added costs of

additional function evaluations in the fully implicit approach. Our results indicate that a fully implicit solu-

tion approach can achieve more accurate solutions than semi-implicit solution methods in many simula-

tions involving the interaction of radiation and matter with highly nonlinear source terms. Furthermore,
the fully implicit approach can be as cost effective as semi-implicit approaches in many cases despite the

use of tabulated values for the opacities. We did see, however, that when only low accuracy results are

required, the semi-implicit method may be the preferred method due to speed and (in the case of very

low accuracy) robustness. Lastly, the solution approach is shown to scale well to very large problems solved

on parallel machines.
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